Abstract
Mutations in alpha-synuclein have been linked to rare, autosomal dominant forms of Parkinsons disease. Despite its ubiquitous expression, mutant alpha-synuclein primarily leads to the loss of dopamine-producing neurons in the substantia nigra. Alpha-synuclein is a presynaptic nerve terminal protein of unknown function, though some studies suggest it is important for synapse formation and maintenance. The present study utilized a new human mesencephalic cell line, MESC2.10, to study the effect of A53T mutant alpha-synuclein on dopamine homeostasis. In addition to expressing markers of mature dopamine neurons, differentiated MESC2.10 cells are electrically active, produce dopamine, and express wild-type human alpha-synuclein. Lentivirus-induced overexpression of A53T mutant alpha-synuclein in differentiated MESC2.10 cells resulted in downregulation of the vesicular dopamine transporter (VMAT2), decreased potassium-induced and increased amphetamine-induced dopamine release, enhanced cytoplasmic dopamine immunofluorescence, and increased intracellular levels of superoxide. These results suggest that mutant alpha-synuclein leads to an impairment in vesicular dopamine storage and consequent accumulation of dopamine in the cytosol, a pathogenic mechanism that underlies the toxicity of the psychostimulant amphetamine and the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium. Interestingly, cells expressing A53T mutant alpha-synuclein were resistant to amphetamine-induced toxicity. Since extra-vesicular, cytoplasmic dopamine can be easily oxidized into reactive oxygen species and other toxic metabolites, mutations in alpha-synuclein might lead to Parkinsons disease by triggering protracted, low-grade dopamine toxicity resulting in terminal degeneration and ultimately cell death.
Original language | English |
---|---|
Pages (from-to) | 38884-38894 |
Journal | Journal of Biological Chemistry |
Volume | 277 |
Issue number | 41 |
DOIs | |
Publication status | Published - 2002 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Neuronal Survival (013212041), Islet cell physiology (013212142)
Subject classification (UKÄ)
- Cell and Molecular Biology