Effect of Supercritical Carbon Dioxide on the Thermodynamics of Model Blends of Styrene-Acrylonitrile Copolymer and Poly(methyl methacrylate) Studied by Small-Angle Neutron Scattering

Sebnem Inceoglu, Nicholas P. Young, Andrew Jackson, Steven R. Kline, Stephane Costeux, Nitash P. Balsara

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Quantitative analysis of small angle neutron scattering (SANS) data from homogeneous multicomponent mixtures of supercritical carbon dioxide (scCO(2)) and two polymers is presented for the first time. The two polymers used in this study were styrene-acrylonitrile copolymer (SAN) and deuterated poly(methyl methacrylate) (dPMMA). Model polymers were used to facilitate comparisons between theory and experiment. The random phase approximation (RPA) was used to derive a simple expression to describe SANS profiles. The scCO(2)-free binary blend was studied to determine the temperature dependence of the polymer-polymer interaction parameter. scCO(2)-polymer solubility data was used to relate polymer-solvent interaction parameters. Comparisons between SANS profiles from multicomponent mixtures and the RPA expression provided an estimate of the interaction parameter between scCO(2) and PMMA, chi(13). The addition of scCO(2) at a modest pressure results in a decrease of phase separation temperature T-s by 127 K. The analysis indicates that the change in T-s is caused by an increase in chi(13) with increasing scCO(2) pressure.
    Original languageEnglish
    Pages (from-to)6345-6356
    JournalMacromolecules
    Volume46
    Issue number15
    DOIs
    Publication statusPublished - 2013

    Subject classification (UKÄ)

    • Natural Sciences
    • Physical Sciences

    Fingerprint

    Dive into the research topics of 'Effect of Supercritical Carbon Dioxide on the Thermodynamics of Model Blends of Styrene-Acrylonitrile Copolymer and Poly(methyl methacrylate) Studied by Small-Angle Neutron Scattering'. Together they form a unique fingerprint.

    Cite this