Effective material parameters for 3D periodic media with small but non-vanishing microscopic scale

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceedingpeer-review

Abstract

We find effective (homogenized) parameters for Maxwell's equations when the microscopic scale becomes small, but not infinitesimal, compared to the wavelength. The analysis is based on a singular value decomposition of the differential operator in Maxwell's equations
Original languageEnglish
Title of host publicationURSI 2004 International Symposium on Electromagnetic Theory
PublisherPisa University
Pages993-995
ISBN (Print)88-8492-252-6
Publication statusPublished - 2004
EventInternational Symposium on Electromagnetic Theory (URSI EMTS 2004) - Pisa, Italy
Duration: 2004 May 232004 May 27

Conference

ConferenceInternational Symposium on Electromagnetic Theory (URSI EMTS 2004)
Country/TerritoryItaly
CityPisa
Period2004/05/232004/05/27

Subject classification (UKÄ)

  • Electrical Engineering, Electronic Engineering, Information Engineering

Free keywords

  • effective material parameters
  • small nonvanishing microscopic scale media
  • effective homogenized parameters
  • Maxwell's equations
  • wavelength
  • microscopic scale
  • differential operator
  • singular value decomposition
  • 3D periodic media

Fingerprint

Dive into the research topics of 'Effective material parameters for 3D periodic media with small but non-vanishing microscopic scale'. Together they form a unique fingerprint.

Cite this