Effects of Post-Injections Strategies on UHC and CO at Gasoline PPC Conditions in a Heavy-Duty Optical Engine

Marcus Olof Lundgren, Zhenkan Wang, Alexios Matamis, Oivind Andersson, Mattias Richter, Martin Tuner, Marcus Alden, Arne Andersson

Research output: Contribution to journalArticlepeer-review

Abstract

Gasoline partially premixed combustion (PPC) has shown potential in terms of high efficiency with low emissions of oxides of nitrogen (NOx) and soot. Despite these benefits, emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO) are the main shortcomings of the concept. These are caused, among other things, by overlean zones near the injector tip and injector dribble. Previous diesel low temperature combustion (LTC) research has demonstrated post injections to be an effective strategy to mitigate these emissions. The main objective of this work is to investigate the impact of post injections on CO and UHC emissions in a quiescent (non-swirling) combustion system. A blend of primary reference fuels, PRF87, having properties similar to US pump gasoline was used at PPC conditions in a heavy duty optical engine. The start of the main injection was maintained constant. Dwell and mass repartition between the main and post injections were varied to evaluate their effect. All points were run at 7 bar IMEPg. High-speed imaging of the natural combustion luminescence was performed together with measurements of performance and engine out emissions. Results show reduction in both CO and UHC with close coupled injections. A large close coupled post injection show the largest reduction in UHC. Analysis show that a post injection prior to combustion reduces the dribble and increases the recirculation in the downstream region of the fuel jet, hence reaching more of the UHC in the area near the injector. General observations show that the partition of fuel between the injections have the largest impact on the CO while the dwell time affects UHC emissions. Injector dribble seems to be a significant contributor to the UHC emissions.

Original languageEnglish
Article number2017-01-0753
Number of pages15
JournalSAE Technical Papers
Volume2017
Issue numberMarch
DOIs
Publication statusPublished - 2017 Mar 28
EventSAE World Congress Experience 2017 - Cobo Hall, Detroit, United States
Duration: 2017 Apr 42017 Apr 6
http://www.sae.org/congress/2017/

Subject classification (UKÄ)

  • Energy Engineering
  • Atom and Molecular Physics and Optics

Fingerprint

Dive into the research topics of 'Effects of Post-Injections Strategies on UHC and CO at Gasoline PPC Conditions in a Heavy-Duty Optical Engine'. Together they form a unique fingerprint.

Cite this