Efficient Wideband mmW Transceiver Front End for 5G Base Stations in 22-nm FD-SOI CMOS

Christian Elgaard, Mustafa Ozen, Eric Westesson, Ahmed Mahmoud, Florent Torres, Shakila Bint Reyaz, Therese Forsberg, Rehman Akbar, Hans Hagberg, Henrik Sjoland

Research output: Contribution to journalArticlepeer-review

Abstract

This article presents a fully integrated millimeter-wave (mmW) transceiver front end covering 24.25&#x2013;29.5 GHz. It features a wideband Doherty power amplifier utilizing adaptive bias and a transmit/receive switch (TRX-switch) that has embedded low noise amplifier to antenna matching. The phase shift of 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> to the Doherty auxiliary amplifier is achieved using a separate IQ-mixer with rearranged phases in the auxiliary path, ensuring a wideband 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> phase shift, and avoiding 3-dB loss from radio frequency (RF) input power splitting. Special emphasis is on the analysis of adaptive bias, the Doherty output combiner network, the decoupling capacitors, and the TRX-switch. Including TRX-switch losses of 1.1 dB in transmit mode, the transmitter reaches a saturated output power of 18.3 dBm with a 1-dB output compression point of 15.9 dBm. Stimulated with a 400-MHz 16-QAM orthogonal frequency-division multiplexing (OFDM) IQ-signal at baseband, without digital IQ-compensation and predistortion, the transmitter delivers a 26.5-GHz modulated signal with an output power (<inline-formula> <tex-math notation="LaTeX">$P_{\rm out}$</tex-math> </inline-formula>) of 12.8 dBm and an error vector magnitude (EVM) of <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>20.2 dB. The complete transmitter, including quadrature local oscillator drivers, then achieves a power added efficiency (PAE) of 5.8%. For a 1600-MHz wide 64-QAM OFDM signal, <inline-formula> <tex-math notation="LaTeX">$P_{\rm out}$</tex-math> </inline-formula> is 9.0 dBm, with an EVM <inline-formula> <tex-math notation="LaTeX">$=$</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>23.3 dB and a complete transmitter PAE of 3.2%. In receive mode including TRX-switch, at 27.25 GHz, the noise figure is below 4 dB with a gain of 23 dB and a third-order input-referred intercept point of <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>9 dBm. The active part of the die, manufactured in 22-nm fully depleted silicon on insulator (FD-SOI) CMOS, occupies 2.3 mm<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula>.

Original languageEnglish
Pages (from-to)321 - 336
Number of pages16
JournalIEEE Journal of Solid-State Circuits
Volume59
Issue number2
Early online date2023
DOIs
Publication statusPublished - 2024

Subject classification (UKÄ)

  • Signal Processing

Free keywords

  • 5G mobile communication
  • Adaptive bias
  • Array signal processing
  • decoupling
  • Doherty power amplifier
  • Gain
  • image rejection (IR)
  • local oscillator (LO)-leakage
  • low noise amplifier (LNA)
  • millimeter-wave (mmW)
  • mixer
  • Power amplifiers
  • Power generation
  • transceiver (TRX)
  • Transceivers
  • transmit/receive switch (TRX-switch)
  • Wideband

Fingerprint

Dive into the research topics of 'Efficient Wideband mmW Transceiver Front End for 5G Base Stations in 22-nm FD-SOI CMOS'. Together they form a unique fingerprint.

Cite this