TY - JOUR
T1 - Electrical Conductance and Thermopower of β-Substituted Porphyrin Molecular Junctions─Synthesis and Transport
AU - Xu, Hailiang
AU - Fan, Hao
AU - Luan, Yuxuan
AU - Yan, Shen
AU - Martin, León
AU - Miao, Ruijiao
AU - Pauly, Fabian
AU - Meyhofer, Edgar
AU - Reddy, Pramod
AU - Linke, Heiner
AU - Wärnmark, Kenneth
PY - 2023
Y1 - 2023
N2 - Molecular junctions offer significant potential for enhancing thermoelectric power generation. Quantum interference effects and associated sharp features in electron transmission are expected to enable the tuning and enhancement of thermoelectric properties in molecular junctions. To systematically explore the effect of quantum interferences, we designed and synthesized two new classes of porphyrins, P1 and P2, with two methylthio anchoring groups in the 2,13- and 2,12-positions, respectively, and their Zn complexes, Zn-P1 and Zn-P2. Past theory suggests that P1 and Zn-P1 feature destructive quantum interference in single-molecule junctions with gold electrodes and may thus show high thermopower, while P2 and Zn-P2 do not. Our detailed experimental single-molecule break-junction studies of conductance and thermopower, the latter being the first ever performed on porphyrin molecular junctions, revealed that the electrical conductance of the P1 and Zn-P1 junctions is relatively close, and the same holds for P2 and Zn-P2, while there is a 6 times reduction in the electrical conductance between P1 and P2 type junctions. Further, we observed that the thermopower of P1 junctions is slightly larger than for P2 junctions, while Zn-P1 junctions show the largest thermopower and Zn-P2 junctions show the lowest. We relate the experimental results to quantum transport theory using first-principles approaches. While the conductance of P1 and Zn-P1 junctions is robustly predicted to be larger than those of P2 and Zn-P2, computed thermopowers depend sensitively on the level of theory and the single-molecule junction geometry. However, the predicted large difference in conductance and thermopower values between Zn-P1 and Zn-P2 derivatives, suggested in previous model calculations, is not supported by our experimental and theoretical findings.
AB - Molecular junctions offer significant potential for enhancing thermoelectric power generation. Quantum interference effects and associated sharp features in electron transmission are expected to enable the tuning and enhancement of thermoelectric properties in molecular junctions. To systematically explore the effect of quantum interferences, we designed and synthesized two new classes of porphyrins, P1 and P2, with two methylthio anchoring groups in the 2,13- and 2,12-positions, respectively, and their Zn complexes, Zn-P1 and Zn-P2. Past theory suggests that P1 and Zn-P1 feature destructive quantum interference in single-molecule junctions with gold electrodes and may thus show high thermopower, while P2 and Zn-P2 do not. Our detailed experimental single-molecule break-junction studies of conductance and thermopower, the latter being the first ever performed on porphyrin molecular junctions, revealed that the electrical conductance of the P1 and Zn-P1 junctions is relatively close, and the same holds for P2 and Zn-P2, while there is a 6 times reduction in the electrical conductance between P1 and P2 type junctions. Further, we observed that the thermopower of P1 junctions is slightly larger than for P2 junctions, while Zn-P1 junctions show the largest thermopower and Zn-P2 junctions show the lowest. We relate the experimental results to quantum transport theory using first-principles approaches. While the conductance of P1 and Zn-P1 junctions is robustly predicted to be larger than those of P2 and Zn-P2, computed thermopowers depend sensitively on the level of theory and the single-molecule junction geometry. However, the predicted large difference in conductance and thermopower values between Zn-P1 and Zn-P2 derivatives, suggested in previous model calculations, is not supported by our experimental and theoretical findings.
U2 - 10.1021/jacs.3c07258
DO - 10.1021/jacs.3c07258
M3 - Article
C2 - 37874166
AN - SCOPUS:85175661147
SN - 1520-5126
VL - 145
SP - 23541
EP - 23555
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 43
ER -