Abstract
Awakening interest in anion exchange membrane fuel cells (AEMFC) for low temperature applications has led to an increased demand for high-performing polymers stable under alkaline conditions. In this study a poly(p-terphenylene piperidinium)-based (PAP) membrane and ionomer was synthesised and applied in membrane electrode assemblies (MEAs), with porous gas-diffusion electrodes based on Pt catalysts supported by VULCAN® and high surface area carbon, respectively. The MEAs were evaluated in AEMFC single-cell tests. In order to identify specific beneficial characteristics of the polymer, the results were compared to reference tests using a commercial Aemion™-polymer. Steady-state polarisation performance measurements were carried out as well as electrode characterisations via cyclic voltammetry and electrochemical impedance spectroscopy, in addition to ex-situ characterisation of the polymer and the membrane electrode assemblies. PAP-based membranes showed great potential with an in-situ measured average ohmic resistance of 0.09 Ω cm2. Mass transport limitations at higher current densities were observed for high surface area carbon electrodes, leading to an overall higher performance with the use of VULCAN®. Properties of the ionomer related to water uptake capabilities were observed to inhibit performance as well. The higher water uptake of PAP-based ionomers appears to be a key property for increasing electrode performance.
Original language | English |
---|---|
Article number | 230287 |
Number of pages | 13 |
Journal | Journal of Power Sources |
Volume | 507 |
DOIs | |
Publication status | Published - 2021 |
Subject classification (UKÄ)
- Polymer Technologies
- Polymer Chemistry
- Materials Chemistry
- Energy Systems
Free keywords
- Fuel cell
- Anion exchange membrane
- Anion exchange ionomer
- Poly(arylene piperidinium)
- Single-cell test
- Electrode structure