Abstract
This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate.
Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m²K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m²K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very high energy-efficiency is required.
Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m²K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m²K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very high energy-efficiency is required.
Original language | English |
---|---|
Qualification | Doctor |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 2001 Dec 10 |
Publisher | |
Publication status | Published - 2001 |
Bibliographical note
Defence detailsDate: 2001-12-10
Time: 09:15
Place: Carolinasalen, Kungshuset, Lundagård
External reviewer(s)
Name: Hastings, S Robert
Title: Professor
Affiliation: Architecture, Energy & Environment GmbH, Switzerland
---
Subject classification (UKÄ)
- Building Technologies
Free keywords
- simulation
- thermal transmittance
- solar energy transmittance
- shading device
- solar protection
- cooling
- heating
- energy demand
- building
- low-emittance coating
- window
- glazing
- comfort
- user aspects
- operative temperature
- Architecture
- Building construction
- Byggnadsteknik
- daylight
- perception
- interior design
- Arkitektur
- inredningsarkitektur
- Energy research
- Energiforskning