Abstract
Diamond-Blackfan anemia is a rare genetic bone marrow failure disorder which is usually caused by mutations in ribosomal protein genes. In the present study, we generated a traceable RPS19-deficient cell model using CRISPR-Cas9 and homology-directed repair to investigate the therapeutic effects of a clinically applicable lentiviral vector at single-cell resolution. We developed a gentle nanostraw delivery platform to edit RPS19 gene in primary human cord blood-derived CD34+ hematopoietic stem and progenitor cells. The edited cells showed expected impaired erythroid differentiation phenotype and a specific erythroid progenitor with abnormal cell cycle status accompanied by enrichment of TNFα/NF-κB and p53 signaling pathways was identified by single-cell RNA sequencing analysis. The therapeutic vector could rescue the abnormal erythropoiesis by activating cell cycle-related signaling pathways and promoted red blood cell production. Overall, these results establish nanostraws as a gentle option for CRISPR-Cas9-based gene editing in sensitive primary hematopoietic stem and progenitor cells, and provide support for future clinical investigations of the lentiviral gene therapy strategy.
Original language | English |
---|---|
Pages (from-to) | 3095 - 3109 |
Number of pages | 47 |
Journal | Haematologica |
Volume | 108 |
Issue number | 11 |
Early online date | 2023 May 18 |
DOIs | |
Publication status | Published - 2023 Nov |
Subject classification (UKÄ)
- Cell and Molecular Biology
- Hematology