Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode

Paolo Bollella, Yuya Hibino, Kenji Kano, Lo Gorton, Riccarda Antiochia

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, an efficient direct electron transfer (DET) reaction was achieved between fructose dehydrogenase (FDH) and a glassy-carbon electrode (GCE) upon which anthracene-modified single-walled carbon nanotubes were deposited. The SWCNTs were activated in situ with a diazonium salt synthesized through the reaction of 2-aminoanthracene with NaNO2 in acidic media (0.5 M HCl) for 5 min at 0 °C. After the in situ reaction, the 2-aminoanthracene diazonium salt was electrodeposited by running cyclic voltammograms from +1000 to -1000 mV. The anthracene-SWCNT-modified GCE was further incubated in an FDH solution, allowing enzyme adsorption. Cyclic voltammograms of the FDH-modified electrode revealed two couples of redox waves possibly ascribed to the heme c1 and heme c3 of the cytochrome domain. In the presence of 10 mM fructose two catalytic waves could clearly be seen and were correlated with two heme cs (heme c1 and c2), with a maximum current density of 485 ± 21 μA cm-2 at 0.4 V at a sweep rate of 10 mV s-1. In contrast, for the plain SWCNT-modified GCE only one catalytic wave and one couple of redox waves were observed. Adsorbing FDH directly onto a GCE showed no non-turnover electrochemistry of FDH, and in the presence of fructose only a slight catalytic effect could be seen. These differences can be explained by considering the hydrophobic pocket close to heme c1, heme c2, and heme c3 of the cytochrome domain at which the anthracenyl aromatic structure could interact through π-π interactions with the aromatic side chains of the amino acids present in the hydrophobic pocket of FDH.

Original languageEnglish
Pages (from-to)10279-10289
Number of pages11
JournalACS Catalysis
DOIs
Publication statusPublished - 2018

Subject classification (UKÄ)

  • Analytical Chemistry

Free keywords

  • 2-aminoanthracene (2-ANT)
  • diazonium coupling
  • fructose dehydrogenase (FDH)
  • hydrophobic pocket
  • single-walled carbon nanotubes (SWCNTs)

Fingerprint

Dive into the research topics of 'Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode'. Together they form a unique fingerprint.

Cite this