Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation

Nikolas Eleftheriou, Xin Ge, Julia Kolesnik, Shannon B. Falconer, Robert J. Harris, Cezar Khursigara, Eric D. Brown, John D. Brennan

Research output: Contribution to journalArticlepeer-review

Abstract

The entrapment of bacterial cells within inorganic silica materials was reported almost 20 years ago. However, almost all studies to date have shown that these entrapped cells are unable to divide and thus should be expected to have reduced promoter activity. In view of the importance of bacteria as model systems for both fundamental and applied biological studies, it is crucial that immobilized cells retain solutionlike properties, including the ability to divide and display normal promoter activity. Herein we report on a method to immobilize bacterial cells within low-density inorganic silica-based materials, where the cells retain both cell division and promoter activity. Sol gel processing was used to entrap Escherichia coli cells carrying a variety of green fluorescent protein-linked promoters into sodium silicate-derived materials that were formed in microwell plates. Using a series of assays, we were able to demonstrate that (1) the entrapped cells can divide within the pores of the silica matrix, (2) cellular pathways are regulated in a similar manner in both solution and the sol-gel-derived materials, and (3) promoters in entrapped cells can be specifically induced with small molecules (e.g., antimicrobial compounds) in a concentration-dependent manner to allow assessment of both potency and mode of action. This solid-phase assay system was tested using multiple antimicrobial pathways and should enable the development of solid-phase assays for the discovery of new small molecules that are active against bacteria.
Original languageEnglish
Pages (from-to)4798-4805
JournalChemistry of Materials
Volume25
Issue number23
DOIs
Publication statusPublished - 2013

Subject classification (UKÄ)

  • Materials Chemistry

Free keywords

  • encapsulation
  • sol-gel
  • biosensor
  • screening
  • green fluorescent protein
  • silica
  • cell entrapment

Fingerprint

Dive into the research topics of 'Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation'. Together they form a unique fingerprint.

Cite this