Abstract
Protein-peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein-peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody-peptide interaction characteristics, by combining large-scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide-binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low-affinity antibody-peptide interactions. The molecular mechanism for the degenerate peptide-binding specificity appeared to be executed through the use of 2-3 semi-conserved anchor residues in the C-terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex-peptide complexes. In the long-term, this knowledge will be instrumental for advancing our fundamental understanding of protein-peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide-binding proteins in general, in various biotechnical and medical applications.
Original language | English |
---|---|
Pages (from-to) | 1897-1910 |
Journal | Protein Science |
Volume | 21 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2012 |
Subject classification (UKÄ)
- Immunology in the Medical Area (including Cell and Immunotherapy)
Free keywords
- antibody specificity
- anti-peptide antibody
- peptide binding
- immunoaffinity peptide capture
- mass spectrometry