Abstract
Computerized continuous monitoring of soil respiration rates before and during glutamic acid decomposition in heavy metal polluted soils was used to determine four microbial parameters: basal respiration rate, substrate induced respiration rate, lag time before the exponential increase of the soil respiration rate and the specific respiration increment during the exponential phase. Both smelter- and laboratory-contaminated soils were studied.
Basal respiration rate was the parameter most inhibited (54–77%) by heavy metal contamination. Increased soil moisture resulted in increased basal respiration rate, irrespective of pollution level. The substrate-induced respiration rate after the addition of glutamic acid was strongly correlated with the basal respiration rate (r = 0.85−0.95). The change in specific respiration increment was not related to metal contamination but increased with increasing soil moisture, with an optimum at about 250% H2O based on soil organic matter (oven-dried). Lag time was the parameter best correlated with smelter-induced metal contamination (r = 0.64 and 0.75). Unlike the three other parameters, the lag time was unaffected by soil moisture, irrespective of contamination level.
Basal respiration rate was the parameter most inhibited (54–77%) by heavy metal contamination. Increased soil moisture resulted in increased basal respiration rate, irrespective of pollution level. The substrate-induced respiration rate after the addition of glutamic acid was strongly correlated with the basal respiration rate (r = 0.85−0.95). The change in specific respiration increment was not related to metal contamination but increased with increasing soil moisture, with an optimum at about 250% H2O based on soil organic matter (oven-dried). Lag time was the parameter best correlated with smelter-induced metal contamination (r = 0.64 and 0.75). Unlike the three other parameters, the lag time was unaffected by soil moisture, irrespective of contamination level.
Original language | English |
---|---|
Pages (from-to) | 949-954 |
Journal | Soil Biology & Biochemistry |
Volume | 20 |
Issue number | 6 |
Publication status | Published - 1988 |
Subject classification (UKÄ)
- Biological Sciences