Evidence for an L3 phase in ternary deep eutectics: composition-induced L3-to-Lα transition of AOT

Oliver S. Hammond, Naomi S. Elstone, James Doutch, Peixun Li, Karen J. Edler

Research output: Contribution to journalArticlepeer-review

Abstract

Pure and hydrated deep eutectic solvents (DES) are proposed to form self-assembled nanostructures within the fluid bulk, similar to the bicontinuous L3 phase common for ionic liquids (ILs). Labelled choline chloride : urea : water DES were measured using small-angle neutron scattering (SANS), showing no long-range nanostructure. However, solutions of the surfactant AOT in this DES yielded scattering consistent with the L3 “sponge” phase, which was fitted using the Teubner-Strey model. A disclike model gave local structural information, namely, a linear increase in radius versus solvent water content (w = molar ratio of DES : water), eventually forming large, turbid lamellar phases at 10w; an L3-to-Lα transition was observed. Simultaneous multi-contrast SANS fits show the surfactant headgroup region is dominated by interactions with poorly-soluble Na+ at low water contents, and numerically-superior [cholinium]+ as water content increases. The modified interfacial Gaussian curvature from cation : anion volume matching stabilizes the lamellar morphology, allowing the bilayer aggregation number to increase.

Original languageEnglish
Pages (from-to)19314-19321
Number of pages8
JournalNanoscale
Volume15
Issue number47
DOIs
Publication statusPublished - 2023 Nov 21

Subject classification (UKÄ)

  • Physical Chemistry (including Surface- and Colloid Chemistry)

Fingerprint

Dive into the research topics of 'Evidence for an L3 phase in ternary deep eutectics: composition-induced L3-to-Lα transition of AOT'. Together they form a unique fingerprint.

Cite this