Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive ^{222}Ra and ^{228}Ra Beams

P. A. Butler, L. P. Gaffney, P. Spagnoletti, K. Abrahams, M. Bowry, J. Cederkäll, G. de Angelis, H. De Witte, P. E. Garrett, A. Goldkuhle, C. Henrich, A. Illana, K. Johnston, D. T. Joss, J. M. Keatings, N. A. Kelly, M. Komorowska, J. Konki, T. Kröll, M. LozanoB. S. Nara Singh, D. O'Donnell, J. Ojala, R. D. Page, C. Raison, P. Reiter, D. Rosiak, S. Rothe, M. Scheck, M. Seidlitz, T. M. Shneidman, B. Siebeck, J. Sinclair, J. F. Smith, M. Stryjczyk, P. Van Duppen, S. Vinals, V. Virtanen, N. Warr, K. Wrzosek-Lipska, M. Zielińska

    Research output: Contribution to journalArticlepeer-review

    Abstract

    There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

    Original languageEnglish
    Number of pages1
    JournalPhysical Review Letters
    Volume124
    Issue number4
    DOIs
    Publication statusPublished - 2020 Jan 31

    Subject classification (UKÄ)

    • Subatomic Physics

    Fingerprint

    Dive into the research topics of 'Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive ^{222}Ra and ^{228}Ra Beams'. Together they form a unique fingerprint.

    Cite this