Research output per year
Research output per year
Zhengjun Wang, Nils Lenngren, Edoardo Amarotti, Albin Hedse, Karel Žídek, Kaibo Zheng, Donatas Zigmantas, Tõnu Pullerits
Research output: Contribution to journal › Article › peer-review
Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.
Original language | English |
---|---|
Pages (from-to) | 1266-1271 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry Letters |
Volume | 13 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2022 Feb 10 |
Research output: Thesis › Doctoral Thesis (compilation)