Exploiting Sparse Structures in Source Localization and Tracking

Maria Juhlin

Research output: ThesisDoctoral Thesis (compilation)

126 Downloads (Pure)

Abstract

This thesis deals with the modeling of structured signals under different sparsity constraints. Many phenomena exhibit an inherent structure that may be exploited when setting up models, examples include audio waves, radar, sonar, and image objects. These structures allow us to model, identify, and classify the processes, enabling parameter estimation for, e.g., identification, localisation, and tracking.In this work, such structures are exploited, with the goal to achieve efficient localisation and tracking of a structured source signal. Specifically, two scenarios are considered. In papers A and B, the aim is to find a sparse subset of a structured signal such that the signal parameters and source locations maybe estimated in an optimal way. For the sparse subset selection, a combinatorial optimization problem is approximately solved by means of convex relaxation, with the results of allowing for different types of a priori information to be incorporated in the optimization. In paper C, a sparse subset of data is provided, and a generative model is used to find the location of an unknown number of jammers in a wireless network, with the jammers’ movement in the network being tracked as additional observations become available.
Original languageEnglish
QualificationDoctor
Supervisors/Advisors
  • Jakobsson, Andreas, Supervisor
Award date2022 Nov 25
Place of PublicationLund
Publisher
ISBN (Print)978-91-8039-413-0
ISBN (electronic) 978-91-8039-414-7
Publication statusPublished - 2022 Nov 1

Subject classification (UKÄ)

  • Signal Processing

Fingerprint

Dive into the research topics of 'Exploiting Sparse Structures in Source Localization and Tracking'. Together they form a unique fingerprint.

Cite this