Abstract

In the dawning era of artificial intelligence (AI), health care stands to undergo a significant transformation with the increasing digitalization of patient data. Digital imaging, in particular, will serve as an important platform for AI to aid decision making and diagnostics. A growing number of studies demonstrate the potential of automatic pre-surgical skin tumor delineation, which could have tremendous impact on clinical practice. However, current methods rely on having ground truth images in which tumor borders are already identified, which is not clinically possible. We report a novel approach where hyperspectral images provide spectra from small regions representing healthy tissue and tumor, which are used to generate prediction maps using artificial neural networks (ANNs), after which a segmentation algorithm automatically identifies the tumor borders. This circumvents the need for ground truth images, since an ANN model is trained with data from each individual patient, representing a more clinically relevant approach.
Original languageEnglish
Article number109653
Number of pages17
JournaliScience
Volume27
Issue number5
DOIs
Publication statusPublished - 2024 May 17

Subject classification (UKÄ)

  • Cancer and Oncology
  • Biophysics

Free keywords

  • Hyperspectral imaging
  • Machine learning
  • Skin tumours

Fingerprint

Dive into the research topics of 'Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven machine learning'. Together they form a unique fingerprint.

Cite this