Finite-size effects in the dynamics of few bosons in a ring potential

Research output: Contribution to journalArticlepeer-review


We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a 'decay' of the density variation, and the third is associated with periodic 'collapses' and 'revivals' of the density variations, with a factor of separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

Original languageEnglish
Article number035504
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Issue number3
Publication statusPublished - 2018 Jan 16

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics

Free keywords

  • exact diagonalization
  • few-body systems
  • quantum rings
  • time evolution


Dive into the research topics of 'Finite-size effects in the dynamics of few bosons in a ring potential'. Together they form a unique fingerprint.

Cite this