TY - JOUR
T1 - FLT3 ligand and not TSLP is the key regulator of IL-7-independent B-1 and B-2 B Lymphopoiesis.
AU - Jensen, Christina
AU - Kharazi, Shabnam
AU - Böiers, Charlotta
AU - Cheng, Min
AU - Lübking, Anna
AU - Sitnicka Quinn, Ewa
AU - Jacobsen, Sten Eirik W
PY - 2008
Y1 - 2008
N2 - Phenotypically and functionally distinct progenitors and developmental pathways have been proposed to exist for fetally-derived B-1 and conventional B-2 cells. Although IL-7 appears to be the primary regulator of fetal and adult B lymphopoiesis in mice, considerable fetal B lymphopoiesis and postnatal B-cells are sustained in the absence of IL-7, and in man B-cell generation is suggested to be largely or entirely IL-7-independent, as severe combined immune-deficient patients with IL-7-deficiency appear to have normal B-cell numbers. However, the role of other cytokines in IL-7-independent B lymphopoiesis remains to be established. Although thymic stromal lymphopoietin (TSLP) has been proposed to be the main factor driving IL-7-independent B lymphopoiesis, and to distinguish fetal from adult B-cell progenitor development in mice, recent studies failed to support a primary role of TSLP in IL-7-independent fetal B-cell development. However, the role of TSLP in IL-7-independent adult B lymphopoiesis and in particular in regulation of B-1 cells remains to be established. Herein, we demonstrate that rather than TSLP, IL-7 and FLT3 ligand (FLT3L) are combined responsible for all B-cell generation in mice, including recently identified B-1-specified cell progenitors. Thus, the same IL-7 and FLT3L-mediated signaling regulate alternative cellular pathways of fetal and adult B-1 and B-2 B lymphopoiesis.
AB - Phenotypically and functionally distinct progenitors and developmental pathways have been proposed to exist for fetally-derived B-1 and conventional B-2 cells. Although IL-7 appears to be the primary regulator of fetal and adult B lymphopoiesis in mice, considerable fetal B lymphopoiesis and postnatal B-cells are sustained in the absence of IL-7, and in man B-cell generation is suggested to be largely or entirely IL-7-independent, as severe combined immune-deficient patients with IL-7-deficiency appear to have normal B-cell numbers. However, the role of other cytokines in IL-7-independent B lymphopoiesis remains to be established. Although thymic stromal lymphopoietin (TSLP) has been proposed to be the main factor driving IL-7-independent B lymphopoiesis, and to distinguish fetal from adult B-cell progenitor development in mice, recent studies failed to support a primary role of TSLP in IL-7-independent fetal B-cell development. However, the role of TSLP in IL-7-independent adult B lymphopoiesis and in particular in regulation of B-1 cells remains to be established. Herein, we demonstrate that rather than TSLP, IL-7 and FLT3 ligand (FLT3L) are combined responsible for all B-cell generation in mice, including recently identified B-1-specified cell progenitors. Thus, the same IL-7 and FLT3L-mediated signaling regulate alternative cellular pathways of fetal and adult B-1 and B-2 B lymphopoiesis.
U2 - 10.1182/blood-2008-04-150508
DO - 10.1182/blood-2008-04-150508
M3 - Article
C2 - 18566323
SN - 1528-0020
VL - 112
SP - 2297
EP - 2304
JO - Blood
JF - Blood
ER -