Fluctuating parts of nuclear ground-state correlation energies

Research output: Contribution to journalArticlepeer-review


Background: Heavy atomic nuclei are often described using the Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into account Pauli effects and pairing correlations while other correlation effects are mimicked through the use of effective density-dependent interactions. Purpose: Investigate the influence of higher-order correlation effects on nuclear binding energies using Skyrme's effective interaction. Methods: A cutoff in relative momenta is introduced to remove ultraviolet divergencies caused by the zero-range character of the interaction. Corrections to binding energies are then calculated using the quasiparticle-random-phase approximation and second-order many-body perturbation theory. Result: Contributions to the correlation energies are evaluated for several isotopic chains and an attempt is made to disentangle which parts give rise to fluctuations that may be difficult to incorporate on the HFB level. The dependence of the results on the cutoff is also investigated. Conclusions: The improved interaction allows explicit summations of perturbation series, which is useful for the description of some nuclear observables. However, refits of the interaction parameters are needed to obtain more quantitative results.
Original languageEnglish
Article number054303
JournalPhysical Review C (Nuclear Physics)
Issue number5
Publication statusPublished - 2013

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Mathematical Physics (Faculty of Technology) (011040002), Department of Physics (011013000)

Subject classification (UKÄ)

  • Physical Sciences


Dive into the research topics of 'Fluctuating parts of nuclear ground-state correlation energies'. Together they form a unique fingerprint.

Cite this