Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.

Research output: Contribution to journalDebate/Note/Editorialpeer-review


The gamma Y moth selects to migrate in stronger winds compared to songbirds, enabling fast transport to distant breeding sites, but a lower precision in orientation as the moth allows itself to be drifted by the winds. Photo: Ian Woiwod. In Focus: Chapman, J.R., Nilsson, C., Lim, K.S., Bäckman, J., Reynolds, D.R. & Alerstam, T. (2015) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to winds. Journal of Animal Ecology, In press Insects and songbirds regularly migrate long distances across continents and seas. During these nocturnal migrations, they are exposed to a fluid medium, the air, in which they transport themselves by flight at similar speeds as the winds may carry them. It is crucial for an animal to select the most favourable flight conditions relative to winds to minimize the distance flown on a given amount of fuel and to avoid hazardous situations. Chapman et al. (2015a) showed contrasting strategies in how moths initiate migration predominantly under tailwind conditions, allowing themselves to drift to a larger extent and gain ground speed as compared to nocturnal songbird migrants. The songbirds use more variable flight strategies in relation to winds, where they sometimes allow themselves to drift, and at other occasions compensate for wind drift. This study shows how insects and birds have differentially adapted to migration in relation to winds, which is strongly dependent on their own flight capability, with higher flexibility enabling fine-tuned responses to keep a time programme and reach a goal in songbirds compared to in insects.
Original languageEnglish
Pages (from-to)1-4
JournalJournal of Animal Ecology
Issue number1
Publication statusPublished - 2016

Subject classification (UKÄ)

  • Evolutionary Biology


Dive into the research topics of 'Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.'. Together they form a unique fingerprint.

Cite this