Abstract
In this work it is shown that domains of ordered dipoles are formed in large droplets made from dipolar particles provided that the dipole-dipole interaction between nearest neighbors is larger than the thermal energy. The size of the domains grows almost linearly with the size of the droplets for droplets containing 1000-30 000 particles. The largest domains occupy around 25-35% of the droplet volume. The total dipole moment of a domain is of the order of 3-10% of the maximum dipole moment possible if all dipoles in the domain were parallel. The finding offers an explanation to the observation that different boundary conditions yield different long-range order for dipolar liquids and challenges the present view of a short-range dipolar order in polar solvents.
Original language | English |
---|---|
Pages (from-to) | 10745-10758 |
Journal | The Journal of Physical Chemistry Part B |
Volume | 111 |
Issue number | 36 |
DOIs | |
Publication status | Published - 2007 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)
Subject classification (UKÄ)
- Theoretical Chemistry