Abstract
Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclusively placed in ortho positions to the many sulfone bridges, giving these blocks IECs of 4.1 and 4.6 meq·g−1, respectively. Copolymer membranes with IECs of 1.4 meq·g−1 displayed well-connected hydrophilic nanophase domains and had decomposition temperatures at, or above, 300 °C under air. The copolymer with the tetrasulfonated tetraaryldisulfone segments showed a proton conductivity of 0.13 S·cm−1 at 80 °C under fully humidified conditions, and surpassed that of a perfluorosulfonic acid membrane (NRE212) by a factor of 5 at –20 °C over time.
Original language | English |
---|---|
Pages (from-to) | 474-480 |
Journal | Macromolecular Rapid Communications |
Volume | 32 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2011 |
Bibliographical note
First published online on 29 Dec. 2010The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Polymer and Materials Chemistry (LTH) (011001041)
Subject classification (UKÄ)
- Chemical Sciences
Free keywords
- polymer electrolyte fuel cell membranes
- sulfonations
- amphiphilic block copolymers
- ionomers
- polycondensation