TY - JOUR
T1 - Further Insights into the Catalytical Properties of Deglycosylated Pyranose Dehydrogenase from Agaricus meleagris Recombinantly Expressed in Pichia pastoris
AU - Yakovleva, Maria
AU - Killyeni, Aniko
AU - Seubert, Oliver
AU - Conghaile, Peter O.
AU - MacAodha, Domhnall
AU - Leech, Donal
AU - Gonaus, Christoph
AU - Popescu, Ionel Catalin
AU - Peterbauer, Clemens K.
AU - Kjellström, Sven
AU - Gorton, Lo
PY - 2013
Y1 - 2013
N2 - The present study focuses on fragmented deglycosylated pyranose dehydrogenase (fdgPDH) from Agaricus meleagris recombinantly expressed in Pichia pastoris. Fragmented deglycosylated PDH is formed from the deglycosylated enzyme (dgPDH) when it spontaneously loses a C-terminal fragment when stored in a buffer solution at 4 degrees C. The remaining larger fragment has a molecular weight of similar to 46 kDa and exhibits higher volumetric activity for glucose oxidation compared with the deglycosylated and glycosylated (gPDH) forms of PDH. Flow injection amperometry and cyclic voltammetry were used to assess and compare the catalytic activity of the three investigated forms of PDH, "wired" to graphite electrodes with two different osmium redox polymers: [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(poly(vinylimidazole))(10)Cl](+) [Os(dmbpy)PVI] and [Os(4,4'-dimethoxy-2,2'-bipyridine)(2)(poly-(vinylimidazole))(10)Cl](+) [Os(dmobpy)PVI]. When "wired" with Os(dmbpy)PVI, the graphite electrodes modified with fdgPDH showed a pronounced increase in the current density with J(max). 13- and 6-fold higher than that observed for gPDH- and dgPDH-modified electrodes, making the fragmented enzyme extraordinarily attractive for further biotechnological applications. An easier access of the substrate to the active site and improved communication between the enzyme and mediator matrix are suggested as the two main reasons for the excellent performance of the fdgPDH when compared with that of gPDH and dgPDH. Three of the four glycosites in PDH: N-75, N-175, and N-252 were assigned using mass spectrometry in conjunction with endoglycosidase treatment and tryptic digestion. Determination of the asparagine residues carrying carbohydrate moieties in PDH can serve as a solid background for production of recombinant enzyme lacking glycosylation.
AB - The present study focuses on fragmented deglycosylated pyranose dehydrogenase (fdgPDH) from Agaricus meleagris recombinantly expressed in Pichia pastoris. Fragmented deglycosylated PDH is formed from the deglycosylated enzyme (dgPDH) when it spontaneously loses a C-terminal fragment when stored in a buffer solution at 4 degrees C. The remaining larger fragment has a molecular weight of similar to 46 kDa and exhibits higher volumetric activity for glucose oxidation compared with the deglycosylated and glycosylated (gPDH) forms of PDH. Flow injection amperometry and cyclic voltammetry were used to assess and compare the catalytic activity of the three investigated forms of PDH, "wired" to graphite electrodes with two different osmium redox polymers: [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(poly(vinylimidazole))(10)Cl](+) [Os(dmbpy)PVI] and [Os(4,4'-dimethoxy-2,2'-bipyridine)(2)(poly-(vinylimidazole))(10)Cl](+) [Os(dmobpy)PVI]. When "wired" with Os(dmbpy)PVI, the graphite electrodes modified with fdgPDH showed a pronounced increase in the current density with J(max). 13- and 6-fold higher than that observed for gPDH- and dgPDH-modified electrodes, making the fragmented enzyme extraordinarily attractive for further biotechnological applications. An easier access of the substrate to the active site and improved communication between the enzyme and mediator matrix are suggested as the two main reasons for the excellent performance of the fdgPDH when compared with that of gPDH and dgPDH. Three of the four glycosites in PDH: N-75, N-175, and N-252 were assigned using mass spectrometry in conjunction with endoglycosidase treatment and tryptic digestion. Determination of the asparagine residues carrying carbohydrate moieties in PDH can serve as a solid background for production of recombinant enzyme lacking glycosylation.
U2 - 10.1021/ac4023988
DO - 10.1021/ac4023988
M3 - Article
C2 - 24016351
SN - 1520-6882
VL - 85
SP - 9852
EP - 9858
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 20
ER -