TY - JOUR
T1 - Fusion of gauge-based, reanalysis, and satellite precipitation products using Bayesian model averaging approach
T2 - Determination of the influence of different input sources
AU - Wei, Linyong
AU - Jiang, Shanhu
AU - Dong, Jianzhi
AU - Ren, Liliang
AU - Liu, Yi
AU - Zhang, Linqi
AU - Wang, Menghao
AU - Duan, Zheng
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/3
Y1 - 2023/3
N2 - Selection of the number and which of multisource precipitation datasets is crucially important for precipitation fusion. Considering the effects of different inputs, this study proposes a new framework based on the Bayesian model averaging (BMA) algorithm to integrate precipitation information from gauge-based analysis CPC, reanalysis-derived dataset ERA5, and satellite-retrieval products IMERG-E and GSMaP-RT. The BMA weights were optimized for the period 2001–2010 using daily measurements and then applied to the period 2011–2015 for model validation. Seven BMA-merged precipitation products (i.e., MCE, MCI, MCG, MCEI, MCEG, MCIG, and MCEIG) were thoroughly evaluated across mainland China and then compared against the state-of-the-art ensemble-based product, MSWEP. The results indicate that the BMA predictions performed substantially better than the reanalysis and satellite precipitation datasets in both daily statistics and seasonal analyses. MCE, MCI, and MCEG demonstrated better performances relative to CPC in terms of individual metrics. Moreover, MCI, MCG, and MCEI generally outperformed MSWEP over the entire study area, particularly in local regions, such as southwestern China and the eastern Tibetan Plateau. During Typhoon Rammasun in 2014, MCG and MCEG provided greater detail for heavy rainfall events than the four ensemble members and the MSWEP product. Thus, the performance of the BMA predictions exhibited evident differences because of various input sources. CPC was the major internal influencing factor with the highest weight score. Meanwhile, the increased-input CPC dataset into the BMA-based schemes exerted a significant influence on the precipitation estimates, which markedly facilitated the performance improvement of the fusion model, and its improved degree (greater than 14 %) was obtained using a ‘changed-initial’ comparison method. Our results demonstrate that the developed modifiable BMA framework is useful for analyzing the impacts of ensemble members on BMA predictions and suggests that it is considerate in the use of different input sources for generating ensemble-based precipitation products.
AB - Selection of the number and which of multisource precipitation datasets is crucially important for precipitation fusion. Considering the effects of different inputs, this study proposes a new framework based on the Bayesian model averaging (BMA) algorithm to integrate precipitation information from gauge-based analysis CPC, reanalysis-derived dataset ERA5, and satellite-retrieval products IMERG-E and GSMaP-RT. The BMA weights were optimized for the period 2001–2010 using daily measurements and then applied to the period 2011–2015 for model validation. Seven BMA-merged precipitation products (i.e., MCE, MCI, MCG, MCEI, MCEG, MCIG, and MCEIG) were thoroughly evaluated across mainland China and then compared against the state-of-the-art ensemble-based product, MSWEP. The results indicate that the BMA predictions performed substantially better than the reanalysis and satellite precipitation datasets in both daily statistics and seasonal analyses. MCE, MCI, and MCEG demonstrated better performances relative to CPC in terms of individual metrics. Moreover, MCI, MCG, and MCEI generally outperformed MSWEP over the entire study area, particularly in local regions, such as southwestern China and the eastern Tibetan Plateau. During Typhoon Rammasun in 2014, MCG and MCEG provided greater detail for heavy rainfall events than the four ensemble members and the MSWEP product. Thus, the performance of the BMA predictions exhibited evident differences because of various input sources. CPC was the major internal influencing factor with the highest weight score. Meanwhile, the increased-input CPC dataset into the BMA-based schemes exerted a significant influence on the precipitation estimates, which markedly facilitated the performance improvement of the fusion model, and its improved degree (greater than 14 %) was obtained using a ‘changed-initial’ comparison method. Our results demonstrate that the developed modifiable BMA framework is useful for analyzing the impacts of ensemble members on BMA predictions and suggests that it is considerate in the use of different input sources for generating ensemble-based precipitation products.
KW - Bayesian model averaging
KW - Ensemble-based precipitation product
KW - Mainland China
KW - Performance improvement
KW - Precipitation
KW - Precipitation fusion
U2 - 10.1016/j.jhydrol.2023.129234
DO - 10.1016/j.jhydrol.2023.129234
M3 - Article
AN - SCOPUS:85147857832
SN - 0022-1694
VL - 618
JO - Journal of Hydrology
JF - Journal of Hydrology
M1 - 129234
ER -