TY - JOUR
T1 - Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients
AU - Åkervall, Jan
AU - Xiang, G
AU - Qian, CN
AU - Schoumans, J
AU - Leeser, B
AU - Kort, E
AU - Cole, A
AU - Resau, J
AU - Bradford, C
AU - Carey, T
AU - Wennerberg, J
AU - Anderson, Harald
AU - Tennvall, Jan
AU - Teh, BT
PY - 2004
Y1 - 2004
N2 - Purpose: The choice of treatment for squamous cell carcinoma of the head and neck (SCCHN) is still primarily based on the tumor-node-metastasis classification. However, it is reasonable to believe that biological profiles of SCCHN may be independently associated with response to therapy. The aim of the present study was to examine genetic changes and gene expression profiles that might correlate with sensitivity to cisplatin [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay] in 10 SCCHN cell lines. Experimental Design: Five cisplatin-sensitive and five cisplatin-resistant cell lines [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay] were studied by comparative genomic hybridization, spectral karyotyping, and cDNA microarray analysis (21,632 sequence-validated human cDNA; confirmation by reverse transcriptase-PCR for selected genes). For the MET proto-oncogene, which showed low expression in the chemosensitive cell lines, we did immunohistochemical staining on SCCHN of 29 patients who received induction chemotherapy. Results: The five cisplatin-resistant cell lines showed significantly more genetic imbalances (regions of loss and amplification) and chromosomal abnormalities by comparative genomic hybridization and spectral karyotyping, respectively, than did the five cisplatin-sensitive cell lines. Microarray studies identified similar to60 genes that clearly distinguish between the two groups of cell lines. Some of these genes are known to be involved in tumor progression, metastasis, and drug resistance. We identified low expression of c-met (immunohistochemistry) as a predictive factor for complete response in nondiploid tumors (P = 0.026). Conclusions: We conclude that cisplatin sensitivity and resistance are related to distinctive differences in the genetic and expression profiles in individual SCCHN tumor cell lines and in SCCHN patients. The genes we have identified may serve as potential targets for novel treatment strategies.
AB - Purpose: The choice of treatment for squamous cell carcinoma of the head and neck (SCCHN) is still primarily based on the tumor-node-metastasis classification. However, it is reasonable to believe that biological profiles of SCCHN may be independently associated with response to therapy. The aim of the present study was to examine genetic changes and gene expression profiles that might correlate with sensitivity to cisplatin [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay] in 10 SCCHN cell lines. Experimental Design: Five cisplatin-sensitive and five cisplatin-resistant cell lines [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay] were studied by comparative genomic hybridization, spectral karyotyping, and cDNA microarray analysis (21,632 sequence-validated human cDNA; confirmation by reverse transcriptase-PCR for selected genes). For the MET proto-oncogene, which showed low expression in the chemosensitive cell lines, we did immunohistochemical staining on SCCHN of 29 patients who received induction chemotherapy. Results: The five cisplatin-resistant cell lines showed significantly more genetic imbalances (regions of loss and amplification) and chromosomal abnormalities by comparative genomic hybridization and spectral karyotyping, respectively, than did the five cisplatin-sensitive cell lines. Microarray studies identified similar to60 genes that clearly distinguish between the two groups of cell lines. Some of these genes are known to be involved in tumor progression, metastasis, and drug resistance. We identified low expression of c-met (immunohistochemistry) as a predictive factor for complete response in nondiploid tumors (P = 0.026). Conclusions: We conclude that cisplatin sensitivity and resistance are related to distinctive differences in the genetic and expression profiles in individual SCCHN tumor cell lines and in SCCHN patients. The genes we have identified may serve as potential targets for novel treatment strategies.
U2 - 10.1158/1078-0432.CCR-04-0722
DO - 10.1158/1078-0432.CCR-04-0722
M3 - Article
SN - 1078-0432
VL - 10
SP - 8204
EP - 8213
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 24
ER -