TY - UNPB
T1 - Genome-wide association study on 13,167 individuals identifies regulators of hematopoietic stem and progenitor cell levels in human blood
AU - Lopez de Lapuente Portilla, Aitzkoa
AU - Ekdahl, Ludvig
AU - Cafaro, Caterina
AU - Ali, Zain
AU - Miharada, Natsumi
AU - Thorleifsson, Gudmar
AU - Zemaitis, Kristijonas
AU - Lamarca Arrizabalaga, Antton
AU - Thodberg, Malte
AU - Pertesi, Maroulio
AU - Dhapola, Parashar
AU - Bao, Erik L
AU - Niroula, Abhishek
AU - Bali, Divya
AU - Norddahl, Gudmundur L.
AU - Ugidos Damboriena, Nerea
AU - Sankaran, Vijay G
AU - Karlsson, Göran
AU - Thorsteinsdottir, Unnur
AU - Larsson, Jonas
AU - Stefánsson, Kári
AU - Nilsson, Björn
PY - 2021/4/3
Y1 - 2021/4/3
N2 - Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and stem cell transplantation. To date, HSPC regulation has been extensively studied in vitro and in animal models, but less is known about the mechanisms in vivo in humans. Here, in a genome-wide association study on 13,167 individuals, we identify 9 significant and 2 suggestive DNA sequence variants that influence HSPC (CD34+) levels in human blood. The identified loci associate with blood disorders, harbor known and novel HSPC genes, and affect gene expression in HSPCs. Interestingly, our strongest association maps to the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. By functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA- knockdown increased CD34+ and CD34+90+ cell proportions in umbilical cord blood cultures. Our findings represent the first large-scale association study on a stem cell trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a novel inhibition target that can potentially be utilized clinically to facilitate stem cell harvesting for transplantation.
AB - Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and stem cell transplantation. To date, HSPC regulation has been extensively studied in vitro and in animal models, but less is known about the mechanisms in vivo in humans. Here, in a genome-wide association study on 13,167 individuals, we identify 9 significant and 2 suggestive DNA sequence variants that influence HSPC (CD34+) levels in human blood. The identified loci associate with blood disorders, harbor known and novel HSPC genes, and affect gene expression in HSPCs. Interestingly, our strongest association maps to the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. By functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA- knockdown increased CD34+ and CD34+90+ cell proportions in umbilical cord blood cultures. Our findings represent the first large-scale association study on a stem cell trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a novel inhibition target that can potentially be utilized clinically to facilitate stem cell harvesting for transplantation.
U2 - 10.1101/2021.03.31.437808
DO - 10.1101/2021.03.31.437808
M3 - Preprint (in preprint archive)
BT - Genome-wide association study on 13,167 individuals identifies regulators of hematopoietic stem and progenitor cell levels in human blood
PB - bioRxiv
ER -