TY - JOUR
T1 - GIS-based hydrodynamic modeling for urban flood mitigation in fast-growing regions
T2 - a case study of Erbil, Kurdistan Region of Iraq
AU - Mustafa, Andam
AU - Szydłowski, Michał
AU - Veysipanah, Mozafar
AU - Hameed, Hasan Mohammed
PY - 2023
Y1 - 2023
N2 - Floods threaten urban infrastructure, especially in residential neighborhoods and fast-growing regions. Flood hydrodynamic modeling helps identify flood-prone locations and improve mitigation plans' resilience. Urban floods pose special issues due to changing land cover and a lack of raw data. Using a GIS-based modeling interface, input files for the hydrodynamic model were developed. The physical basin's properties were identified using soil map data, Land Use Land Cover (LULC) maps, and a Digital Elevation Model (DEM). So, the HEC-RAS 2-D hydrodynamic model was developed to estimate flood susceptibility and vulnerability in Erbil, Iraq. The case study examines the quality of flood modeling results using different DEM precisions. Faced with the difficulty, this study examines two building representation techniques: Building Block (BB) and Building Resistance (BR). The work presented here reveals that it is possible to apply the BR technique within the HEC-RAS 2-D to create urban flood models for regions that have a lack of data or poor data quality. Indeed, the findings confirmed that the inundated areas or areas where water accumulated in past rainfall events in Erbil are the same as those identified in the numerical simulations. The study's results indicate that the Erbil city is susceptible to flood hazards, especially in areas with low-lying topography and substantial precipitation. The study's conclusions can be utilized to plan and develop flood control structures, since it identified flood-prone areas of the city.
AB - Floods threaten urban infrastructure, especially in residential neighborhoods and fast-growing regions. Flood hydrodynamic modeling helps identify flood-prone locations and improve mitigation plans' resilience. Urban floods pose special issues due to changing land cover and a lack of raw data. Using a GIS-based modeling interface, input files for the hydrodynamic model were developed. The physical basin's properties were identified using soil map data, Land Use Land Cover (LULC) maps, and a Digital Elevation Model (DEM). So, the HEC-RAS 2-D hydrodynamic model was developed to estimate flood susceptibility and vulnerability in Erbil, Iraq. The case study examines the quality of flood modeling results using different DEM precisions. Faced with the difficulty, this study examines two building representation techniques: Building Block (BB) and Building Resistance (BR). The work presented here reveals that it is possible to apply the BR technique within the HEC-RAS 2-D to create urban flood models for regions that have a lack of data or poor data quality. Indeed, the findings confirmed that the inundated areas or areas where water accumulated in past rainfall events in Erbil are the same as those identified in the numerical simulations. The study's results indicate that the Erbil city is susceptible to flood hazards, especially in areas with low-lying topography and substantial precipitation. The study's conclusions can be utilized to plan and develop flood control structures, since it identified flood-prone areas of the city.
U2 - 10.1038/s41598-023-36138-9
DO - 10.1038/s41598-023-36138-9
M3 - Article
C2 - 37264123
AN - SCOPUS:85160918472
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 8935
ER -