Abstract
The CO2 Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO2, CH4 and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO2 Monitoring and Verification Support system. The relative contribution of different emissions and natural fluxes towards observed atmospheric variability is diagnosed by additional tagged tracers in the simulations. The evaluation of such high-resolution model simulations can be used to identify model deficiencies and guide further model improvements.
Original language | English |
---|---|
Article number | 160 |
Journal | Scientific Data |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Dec |
Bibliographical note
Funding Information:The Copernicus Atmosphere Monitoring Service is operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission as part of the Copernicus Programme ( http://copernicus.eu ). The CHE and CoCO2 projects have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776186 and No 958927. We also thank the FLUXNET and TCCON PIs for providing the data used for the validation of the nature run dataset.
Funding Information:
The Copernicus Atmosphere Monitoring Service is operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission as part of the Copernicus Programme (http://copernicus.eu). The CHE and CoCO2 projects have received funding from the European Union?s Horizon 2020 research and innovation programme under grant agreement No 776186 and No 958927. We also thank the FLUXNET and TCCON PIs for providing the data used for the validation of the nature run dataset.
Publisher Copyright:
© 2022, The Author(s).
Subject classification (UKÄ)
- Meteorology and Atmospheric Sciences
- Climate Research