Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity

Göran Bengtsson, Per Bengtson, Katarina Månsson

Research output: Contribution to journalArticlepeer-review

Abstract

A laboratory experiment was designed to challenge the idea that the ON ratio of forest soils may control gross N immobilization, mineralization, and nitrification rates. Soils were collected from three deciduous forests sites varying in C/N ratio between 15 and 27. They were air-dried and rewetted to induce a burst of microbial activity. The N transformation rates were calculated from an isotope dilution and enrichment procedure, in which (NH4Cl)-N-15 or (NaNO3)-N-15 was repeatedly added to the soils during 7 days of incubation. The experiments suggested that differences in gross nitrogen immobilization and mineralization rates between the soils were more related to the respiration rate and ATP content than to the C/N ratio. Peaks of respiration and ATP content were followed by high rates of mineralization and immobilization, with 1-2 days of delay. The gross immobilization of NH4+ was dependent on the gross mineralization and one to two orders of magnitude larger than the gross NO3- immobilization. The gross nitrification rates were negatively related to the ATP content and the C/N ratio and greatly exceeding the net nitrification rates. Taken together, the observations suggest that leaching of nitrate from forest soils may be largely dependent on the density and activity of the microbial community.
Original languageEnglish
Pages (from-to)143-154
JournalSoil Biology & Biochemistry
Volume35
Issue number1
DOIs
Publication statusPublished - 2003

Subject classification (UKÄ)

  • Ecology
  • Biological Sciences

Fingerprint

Dive into the research topics of 'Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity'. Together they form a unique fingerprint.

Cite this