Abstract
We show that for a fixed operator-valued analytic function $g$ the boundedness of the bilinear (Hankel-type) form
$(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,
defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates.
$(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,
defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates.
Original language | English |
---|---|
Journal | International Mathematics Research Notices |
DOIs | |
Publication status | Published - 2011 |
Subject classification (UKÄ)
- Mathematics
Free keywords
- Hankel
- Operator Theory
- Complex Analysis
- Carleson Embedding
- Vector-valued