Hankel Forms and Embedding Theorems in Weighted Dirichlet Spaces

Alexandru Aleman, Karl-Mikael Perfekt

Research output: Contribution to journalArticlepeer-review

Abstract

We show that for a fixed operator-valued analytic function $g$ the boundedness of the bilinear (Hankel-type) form
$(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,
defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates.
Original languageEnglish
JournalInternational Mathematics Research Notices
DOIs
Publication statusPublished - 2011

Subject classification (UKÄ)

  • Mathematics

Free keywords

  • Hankel
  • Operator Theory
  • Complex Analysis
  • Carleson Embedding
  • Vector-valued

Fingerprint

Dive into the research topics of 'Hankel Forms and Embedding Theorems in Weighted Dirichlet Spaces'. Together they form a unique fingerprint.

Cite this