Abstract
A great variety of two-dimensional (2D) boron allotropes (borophenes) were extensively studied in the past decade in the quest for graphene-like materials with potential for advanced technological applications. Among them, the 2D honeycomb boron is of specific interest as a structural analogue of graphene. Recently it has been synthesized on the Al(111) substrate; however it remains unknown to what extent does honeycomb boron behave like graphene. Here we elucidate the structural and electronic properties of this unusual 2D material with a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and DFT calculations. We demonstrate that in contrast to graphene on lattice-mismatched metal surfaces, honeycomb boron cannot wiggle like a blanket on Al(111), but rather induces reconstruction of the top metal layer, forming a stoichiometric AlB2 sheet on top of Al. Our conclusions from theoretical modeling are fully supported by X-ray absorption spectra showing strong similarity in the electronic structure of honeycomb boron on Al(111) and thick AlB2 films. On the other hand, a clear separation of the electronic states of the honeycomb boron into π- and σ-subsystems indicates an essentially 2D nature of the electronic system in both one-layer AlB2 and bulk AlB2.
Original language | English |
---|---|
Pages (from-to) | 15153-15165 |
Journal | ACS Nano |
Volume | 15 |
Issue number | 9 |
Early online date | 2021 |
DOIs | |
Publication status | Published - 2021 |
Subject classification (UKÄ)
- Condensed Matter Physics
Free keywords
- 2D materials
- aluminum boride
- borophene
- DFT
- NEXAFS
- STM
- XPS