Host matrix dependent fluorescence intensity modulation by an electric field in single conjugated polymer chains

Ralph Hania, Daniel Thomsson, Ivan Scheblykin

Research output: Contribution to journalArticlepeer-review

Abstract

An electric field oscillating at a frequency similar to 1 Hz is found to induce strong modulation of the fluorescence intensity of single poly[2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) molecules (M-W similar to 10(6)) embedded in a poly(methyl methacrylate) (PMMA) matrix. The MEH-PPV polymer chains are carefully isolated from the electrodes to avoid effects of injection. In a polystyrene matrix, fluorescence intensity modulations are on average much less pronounced. The difference in average modulation depth can be explained in terms of lower field-induced exciton dissociation rates in the MEH-PPV/polystyrene system compared to MEH-PPV/PMMA because of a lack of suitable acceptor sites. The observed electric field dependence of single-molecule fluorescence strongly suggests that energy transfer from singlet or even triplet excitons to long-living on-chain hole polarons contributes to the observed modulations. The observed large qualitative differences between the responses of different molecules probably reflect differences in chain topology and strongly anisotropic distributions of acceptor sites, while the hysteretic response of some molecules indicates conformational switching.
Original languageEnglish
Pages (from-to)25895-25900
JournalThe Journal of Physical Chemistry Part B
Volume110
Issue number51
DOIs
Publication statusPublished - 2006

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Chemical Physics (S) (011001060)

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics

Fingerprint

Dive into the research topics of 'Host matrix dependent fluorescence intensity modulation by an electric field in single conjugated polymer chains'. Together they form a unique fingerprint.

Cite this