TY - JOUR
T1 - Human G protein-coupled Receptor 30 (GPR30) is N -glycosylated and N-terminal Domain Asparagine 44 is Required for Receptor Structure and Activity
AU - Gonzalez de Valdivia, Ernesto
AU - Sandén, Caroline
AU - Kahn, Robin
AU - Olde, Björn
AU - Leeb-Lundberg, Fredrik L M
N1 - ©2019 The Author(s).
PY - 2019/2/13
Y1 - 2019/2/13
N2 - GPR30, or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used HEK293 cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targeting the receptor N-terminal domain (N-domain) to investigate the role of N -glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated ERK1/2 activity. GPR30 expression was complex with receptor species spanning from about 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N -glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N -glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at about 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional roles.
AB - GPR30, or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used HEK293 cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targeting the receptor N-terminal domain (N-domain) to investigate the role of N -glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated ERK1/2 activity. GPR30 expression was complex with receptor species spanning from about 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N -glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N -glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at about 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional roles.
U2 - 10.1042/BSR20182436
DO - 10.1042/BSR20182436
M3 - Article
C2 - 30760632
SN - 0144-8463
VL - 39
JO - Bioscience Reports
JF - Bioscience Reports
IS - 2
M1 - BSR20182436
ER -