TY - GEN
T1 - Impact of Non-Stationary Noise on xDSL Systems: an Experimental Analysis
AU - Souza, Lamartine
AU - Cardoso, Diego
AU - Silva, Marcelino
AU - Seruffo, Marcos
AU - Russillo, Dário
AU - Costa, JWC
AU - Francês, Carlos
AU - Castro, Agostinho
AU - Cavalcante, Gervásio
AU - Rius i Riu, Jaume
PY - 2007
Y1 - 2007
N2 - Broadband services require data rates that can only be achieved by using relatively high spectrum frequencies. At such high frequencies, the DSL (Digital Subscriber Line) signal is more susceptible to external noise sources, such as radio frequency interference and impulsive noise. This paper aims to characterize how the impulsive noise impacts on services and applications for a broadband system using an ADSL2+ loop. The first approach was to use the impulsive noise defined in the standards G.996.1 (Test Procedures for DSL Transceivers) from ITU-T and TR-048 (ADSL Interoperability Test Plan) from DSL Forum. In this approach we have also used a HDSL (High Bit Rate DSL) and white noise disturbers on the line. The impulsive noises c1 and c2 (defined in G.996.1) are injected into the circuit at the CO (Central Office) end and CPE (Customer Premises Equipment) end of the loop simulator. Additionally, it was analyzed the spikes of noise's impact on the ADSL2+ line. In this case, pre-defined models of NEXT (Near-end crosstalk) and white noise are injected on CO and CPE side, simultaneously. Metrics like packet rate, lost packet count, bandwidth, short-term average transfer delay, and errored seconds are used to characterize the DSL loop under the noise impairments.
AB - Broadband services require data rates that can only be achieved by using relatively high spectrum frequencies. At such high frequencies, the DSL (Digital Subscriber Line) signal is more susceptible to external noise sources, such as radio frequency interference and impulsive noise. This paper aims to characterize how the impulsive noise impacts on services and applications for a broadband system using an ADSL2+ loop. The first approach was to use the impulsive noise defined in the standards G.996.1 (Test Procedures for DSL Transceivers) from ITU-T and TR-048 (ADSL Interoperability Test Plan) from DSL Forum. In this approach we have also used a HDSL (High Bit Rate DSL) and white noise disturbers on the line. The impulsive noises c1 and c2 (defined in G.996.1) are injected into the circuit at the CO (Central Office) end and CPE (Customer Premises Equipment) end of the loop simulator. Additionally, it was analyzed the spikes of noise's impact on the ADSL2+ line. In this case, pre-defined models of NEXT (Near-end crosstalk) and white noise are injected on CO and CPE side, simultaneously. Metrics like packet rate, lost packet count, bandwidth, short-term average transfer delay, and errored seconds are used to characterize the DSL loop under the noise impairments.
U2 - 10.1117/12.724705
DO - 10.1117/12.724705
M3 - Paper in conference proceeding
VL - 6603
BT - Proceedings of SPIE, the International Society for Optical Engineering
T2 - SPIE Optics East Broadband Access Communication Technologies
Y2 - 9 September 2007 through 12 September 2007
ER -