Projects per year
Abstract
This paper presents a novel domain adaptation framework to enhance the accuracy of EEG-based auditory attention classification, specifically for classifying the direction (left or right) of attended speech. The framework aims to improve the performances for subjects with initially low classification accuracy, overcoming challenges posed by instrumental and human factors. Limited dataset size, variations in EEG data quality due to factors such as noise, electrode misplacement or subjects, and the need for generalization across different trials, conditions and subjects necessitate the use of domain adaptation methods. By leveraging domain adaptation methods, the framework can learn from one EEG dataset and adapt to another, potentially resulting in more reliable and robust classification models.
Approach: This paper focuses on investigating a domain adaptation method, based on parallel transport, for addressing the auditory attention classification problem. The EEG data utilized in this study originates from an experiment where subjects were instructed to selectively attend to one of the two spatially separated voices presented simultaneously.
Main results: Significant improvement in classification accuracy was observed when poor data from one subject was transported to the domain of good data from different subjects, as compared to the baseline. The mean classification accuracy for subjects with poor data increased from 45.84% to 67.92%. Specifically, the highest achieved classification accuracy from one subject reached 83.33%, a substantial increase from the baseline accuracy of 43.33%. 
Significance: The findings of our study demonstrate the improved classification performances achieved through the implementation of domain adaptation methods. This brings us a step closer to leveraging EEG in neuro-steered hearing devices.
Original language | English |
---|---|
Journal | Journal of Neural Engineering |
DOIs | |
Publication status | Published - 2023 |
Subject classification (UKÄ)
- Control Engineering
Fingerprint
Dive into the research topics of 'Improving EEG-based decoding of the locus of auditory attention through domain adaptation'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Optimizing the Next Generation Brain Computer Interfaces using Cloud Computing
Heskebeck, F. (Researcher), Bernhardsson, B. (Supervisor), Bergeling, C. (Assistant supervisor) & Hägglund, T. (Assistant supervisor)
2019/08/05 → 2024/08/01
Project: Dissertation
Activities
- 1 Supervision of masters students
-
Domain Adaptation for Attention Steering
Heskebeck, F. (Second supervisor), Bergeling, C. (First/primary/lead supervisor) & Bernhardsson, B. (Examiner)
2020 → …Activity: Examination and supervision › Supervision of masters students