Improving the Mean-Field Fluid Model of Processor Sharing Queueing Networks for Dynamic Performance Models in Cloud Computing

Research output: Contribution to journalArticlepeer-review

5 Citations (SciVal)

Abstract

Resource management in cloud computing is a difficult problem, as one is often tasked with balancing between adequate service to clients and cost minimization in dynamic environments of many interconnected components. To make correct decisions in these environments, good performance models are necessary. A common modeling methodology is to use networks of queues, but as these are prohibitively expensive to evaluate for many real-time applications, different approximation methods for important metrics are frequently employed. One such method—that provides both transient solutions and short, scalable computation times—is the fluid model, which approximates the dynamics of the mean queue lengths using a system of ordinary differential equations. However, finding a fluid model that can adequately approximate an arbitrary queueing network is in general difficult. In this paper, we extend the state of the art with the following three contributions. First, we show that for any mixed multiclass queueing network of processor sharing and delay queues with phase-type service time distributions, such a fluid model can be found via the mean-field approximation. Furthermore, we propose an improved model based on smoothing of the processor share function that improves the performance of certain systems. Finally, using the smoothed mean-field model, we introduce an accurate closed-form approximation of the response time CDF over any subset of classes and queues. The contributions are further evaluated in a large simulation experiment, which shows that they can be used to accurately predict performance metrics under some system perturbations common in cloud computing.
Original languageEnglish
Article number102231
JournalPerformance Evaluation
Volume151
DOIs
Publication statusPublished - 2021 Sep 23

Subject classification (UKÄ)

  • Electrical Engineering, Electronic Engineering, Information Engineering

Keywords

  • Queueing network
  • Processor sharing
  • Mean-field approximation
  • Fluid model
  • Response time approximation

Fingerprint

Dive into the research topics of 'Improving the Mean-Field Fluid Model of Processor Sharing Queueing Networks for Dynamic Performance Models in Cloud Computing'. Together they form a unique fingerprint.

Cite this