Inclusive and differential cross-sections for dilepton tt¯ production measured in √s = 13 TeV pp collisions with the ATLAS detector

G. Aad, T.P.A. Åkesson, E.E. Corrigan, C. Doglioni, P.A. Ekman, J. Geisen, V. Hedberg, H. Herde, G. Jarlskog, B. Konya, E. Lytken, J.U. Mjörnmark, R. Poettgen, N.D. Simpson, E. Skorda, O. Smirnova, L. Zwalinski, ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs (tt¯) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a pp collision energy of s = 13 TeV and correspond to an integrated luminosity of 140 fb −1. The measurements use events containing an oppositely charged eμ pair and b-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton p T distributions is obtained by reweighting the tt¯ sample so as to reproduce the top-quark p T distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be σtt¯=829±1(stat)±13(syst)±8(lumi)±2(beam)pb, where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation. [Figure not available: see fulltext.] © 2023, The Author(s).
Original languageEnglish
Article number141
JournalJournal of High Energy Physics
Volume2023
Issue number7
DOIs
Publication statusPublished - 2023

Subject classification (UKÄ)

  • Subatomic Physics

Free keywords

  • Hadron-Hadron Scattering
  • Top Physics

Fingerprint

Dive into the research topics of 'Inclusive and differential cross-sections for dilepton tt¯ production measured in √s = 13 TeV pp collisions with the ATLAS detector'. Together they form a unique fingerprint.

Cite this