Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

S. Acharya, S. Basu, P. Christiansen, J. Hansen, K.E. Iversen, O. Matonoha, A.F. Nassirpour, A. Ohlson, D. Silvermyr, J. Staa, V. Vislavicius, N. Zurlo, ALICE Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p T) of 0.2 GeV/c and up to p T = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p T range 0.5 < p T < 26 GeV/c at sNN = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p T dependence is observed in pp collisions, where the yield of high-p T electrons increases faster as a function of multiplicity than the one of low-p T electrons. The measurement in p-Pb collisions shows no p T dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations. [Figure not available: see fulltext.] © 2023, The Author(s).
Original languageEnglish
Article number6
JournalJournal of High Energy Physics
Volume2023
Issue number8
DOIs
Publication statusPublished - 2023

Subject classification (UKÄ)

  • Subatomic Physics

Free keywords

  • Hadron-Hadron Scattering

Fingerprint

Dive into the research topics of 'Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions'. Together they form a unique fingerprint.

Cite this