Incorporating Forecasts of Rainfall in Two Hydrologic Models Used for Medium-Range Streamflow Forecasting

J. M. Bravo, A. R. Paz, W. Collischonn, Cintia Bertacchi Uvo, O. C. Pedrollo, S. C. Chou

Research output: Contribution to journalArticlepeer-review

27 Citations (SciVal)

Abstract

This study reports on the performance of two medium-range streamflow forecast models: (1) a multilayer feed-forward artificial neural network; and (2) a distributed hydrologic model. Quantitative precipitation forecasts were used as input to both models. The Furnas Reservoir on the Rio Grande River was selected as a case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generating system. Streamflow forecasts were calculated for a drainage area of about 51,900 km(2), with lead times up to 12 days, at daily intervals. The Nash-Sutcliffe efficiency index, the root-mean-square error, the mean absolute error, and the mean relative error were used to assess the relative performance of the models. Results showed that the performance of streamflow forecasts was strongly dependent on the quality of quantitative precipitation forecasts used. The artificial neural network (ANN) method seemed to be less sensitive to precipitation forecast error relative to the distributed hydrological model. Hence, the latter presented a better skill in flow forecasting when using the more accurate perfect precipitation forecast. The conceptual hydrological model also demonstrates better forecast skill than ANN models for longer lead times, when the representation of the rainfall-runoff process and of the water storage in the watershed becomes more important than the flow routing along the drainage network. In addition, results obtained by incorporating a quantitative precipitation forecast in both models performed better than the current streamflow obtained by the Brazilian national electric system operator using statistical models which do not utilize information on precipitation, whether observed or forecast.
Original languageEnglish
Pages (from-to)435-445
JournalJournal of Hydrologic Engineering
Volume14
Issue number5
DOIs
Publication statusPublished - 2009

Subject classification (UKÄ)

  • Water Engineering

Fingerprint

Dive into the research topics of 'Incorporating Forecasts of Rainfall in Two Hydrologic Models Used for Medium-Range Streamflow Forecasting'. Together they form a unique fingerprint.

Cite this