Increased photosynthesis compensates for shorter growing season in subarctic tundra - 8 years of snow accumulation manipulations

Julia Bosiö, Christian Stiegler, Margareta Johansson, Herbert N. Mbufong, Torben Christensen

Research output: Contribution to journalArticlepeer-review

13 Citations (SciVal)


This study was initiated to analyze the effect of increased snow cover on plant photosynthesis in subarctic mires underlain by permafrost. Snow fences were used to increase the accumulation of snow on a subarctic permafrost mire in northern Sweden. By measuring reflected photosynthetic active radiation (PAR) the effect of snow thickness and associated delay of the start of the growing season was assessed in terms of absorbed PAR and estimated gross primary production (GPP). Six plots experienced increased snow accumulation and six plots were untreated. Incoming and reflected PAR was logged hourly from August 2010 to October 2013. In 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased snow thickness prolonged the duration of the snow cover in spring. The delay of the growing season start in the treated plots was 18 days in 2011, 3 days in 2012 and 22 days in 2013. Results show higher PAR absorption, together with almost 35 % higher light use efficiency, in treated plots compared to untreated plots. Estimations of GPP suggest that the loss in early season photosynthesis, due to the shortening of the growing season in the treatment plots, is well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons. This compensation is likely to be explained by increased soil moisture and nutrients together with a shift in vegetation composition associated with the accelerated permafrost thaw in the treatment plots.
Original languageEnglish
Pages (from-to)321-334
JournalClimatic Change
Issue number2
Publication statusPublished - 2014

Subject classification (UKÄ)

  • Physical Geography


  • subarctic
  • snow
  • PAR
  • photosynthesis
  • light use efficiency
  • peatland


Dive into the research topics of 'Increased photosynthesis compensates for shorter growing season in subarctic tundra - 8 years of snow accumulation manipulations'. Together they form a unique fingerprint.

Cite this