TY - JOUR
T1 - Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke.
AU - Chapman, Katie
AU - Ge, Ruimin
AU - Monni, Emanuela
AU - Tatarishvili, Jemal
AU - Ahlenius, Henrik
AU - Arvidsson, Andreas
AU - Ekdahl, Christine
AU - Lindvall, Olle
AU - Kokaia, Zaal
PY - 2015
Y1 - 2015
N2 - Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts towards the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.
AB - Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts towards the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.
U2 - 10.1016/j.nbd.2015.08.013
DO - 10.1016/j.nbd.2015.08.013
M3 - Article
C2 - 26299391
SN - 0969-9961
VL - 83
SP - 1
EP - 15
JO - Neurobiology of Disease
JF - Neurobiology of Disease
IS - Aug 20
ER -