Abstract
Intact and permeabilized yeast cells were tested as the biorecognition elements for amperometric assay of formaldehyde (FA). For this aim, the mutant G 105 (gcr1 catX) of the methylotrophic yeast Hansenula polymorpha with a high activity of AOX was chosen. Different approaches were used for monitoring FA-dependent cell response including analysis of their oxygen consumption rate by the use of a Clark electrode, as well as assay of oxidation of redox mediator at a screen-printed platinum electrode covered by cells entrapped in Ca-alginate gel. It was shown that oxygen consumption rate of permeabilized cells reached its saturation at 4 mM of FA (23 degrees C). The detection limit was found to be 0.27 mM. In the presence of redox mediator 2,6-dichlorophenolindophenol (DCIP), the screen-printed platinum band electrode covered by permeabilized cells did not show any current output to FA. In contrast, well-pronounced amperometric response to FA was observed in the case of intact yeast cells in the presence of DCIR It was shown that current output reached its maximum at 7 mM concentration of FA. The detection limit was found to be 0.74 mM. Obviously, it is necessary to perform a directed genetic engineering of the yeast cells to improve their bioanalytical characteristics in the corresponding biosensors. (c) 2006 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 934-940 |
Journal | Talanta |
Volume | 71 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2007 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Analytical Chemistry (S/LTH) (011001004)
Subject classification (UKÄ)
- Analytical Chemistry
Free keywords
- intact and permeabilized cells
- mediator
- redox
- amperometry
- biosensor
- bioselective analysis
- formaldehyde
- yeast Hansenula polymorpha