TY - JOUR
T1 - Integrated microanalytical technology enabling rapid and automated protein identification
AU - Ekström, Simon
AU - Önnerfjord, Patrik
AU - Nilsson, Johan
AU - Bengtsson, Martin
AU - Laurell, Thomas
AU - Marko-Varga, György
PY - 2000/1/15
Y1 - 2000/1/15
N2 - Protein identification through peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a standard technique, used in many laboratories around the world. The traditional methodology often includes long incubations (6-24 h) and extensive manual steps. In an effort to address this, an integrated microanalytical platform has been developed for automated identification of proteins. The silicon micromachined analytical tools, i.e., the microchip immobilized enzyme reactor (μ-chip IMER), the piezoelectric microdispenser, and the high-density nanovial target plates, are the cornerstones in the system. The μ-chip IMER provides on-line enzymatic digestion of protein samples (1 μL) within 1-3 min, and the microdispenser enables subsequent on- line picoliter sample preparation in a high-density format. Interfaced to automated MALDI-TOF MS, these tools compose a highly efficient platform that can analyze 100 protein samples in 3.5 h. Kinetic studies on the microreactors are reported as well as the operation of this microanalytical platform for protein identification, wherein lysozyme, myoglobin, ribonuclease A, and cytochrome c have been identified with a high sequence coverage (50-100%).
AB - Protein identification through peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a standard technique, used in many laboratories around the world. The traditional methodology often includes long incubations (6-24 h) and extensive manual steps. In an effort to address this, an integrated microanalytical platform has been developed for automated identification of proteins. The silicon micromachined analytical tools, i.e., the microchip immobilized enzyme reactor (μ-chip IMER), the piezoelectric microdispenser, and the high-density nanovial target plates, are the cornerstones in the system. The μ-chip IMER provides on-line enzymatic digestion of protein samples (1 μL) within 1-3 min, and the microdispenser enables subsequent on- line picoliter sample preparation in a high-density format. Interfaced to automated MALDI-TOF MS, these tools compose a highly efficient platform that can analyze 100 protein samples in 3.5 h. Kinetic studies on the microreactors are reported as well as the operation of this microanalytical platform for protein identification, wherein lysozyme, myoglobin, ribonuclease A, and cytochrome c have been identified with a high sequence coverage (50-100%).
UR - http://www.scopus.com/inward/record.url?scp=0034650858&partnerID=8YFLogxK
U2 - 10.1021/ac990731l
DO - 10.1021/ac990731l
M3 - Article
C2 - 10658321
AN - SCOPUS:0034650858
SN - 1520-6882
VL - 72
SP - 286
EP - 293
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 2
ER -