Abstract
Photon-echo-relaxation measurements made on the 3H4-3P0 transition of 0.01 at. % Pr3+:YAG (where YAG represents yttrium aluminum garnet), 3H4-1D2 transition in 0.1 at. % Pr3+:YAlO3, and 7F0-5D0 transition in 0.25 at. % Eu3+:YAlO3 show that the photon-echo relaxation rate increases when the intensities of the excitation pulses are increased. Although a part of the relaxation-rate increase in Pr3+:YAG may be attributed to an instantaneous spectral diffusion (ISD) in which the presence of excited neighboring Pr3+ ions change the local field and the absorption frequency of the rare-earth ions, our data deviate significantly from the ISD-model predictions. An additional intensity-dependent relaxation mechanism is required to explain the results.
Original language | English |
---|---|
Pages (from-to) | 11568-11571 |
Journal | Physical Review B (Condensed Matter) |
Volume | 41 |
Issue number | 16 |
DOIs | |
Publication status | Published - 1990 |
Subject classification (UKÄ)
- Atom and Molecular Physics and Optics