Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy

R Jason Stafford, Roger E Price, Chris J Diederich, Marko Kangasniemi, Lars E Olsson, John D Hazle

Research output: Contribution to journalArticlepeer-review

Abstract

PURPOSE: To develop a multiplanar magnetic resonance temperature imaging (MRTI) technique based on interleaved gradient-echo echo-planar imaging (EPI), verify in phantom, develop software tools to process and display data on a clinical scanner in near real-time, and demonstrate feasibility to monitor ultrasound thermal ablation therapy in vivo.

MATERIALS AND METHODS: Temperature estimation used complex phase-difference subtraction of the EPI MRTI data to indirectly measure the temperature-dependent water proton-resonance-frequency shift. Software tools were developed to run on a clinical 1.5-T MR scanner that processed and displayed relevant temperature and thermal dosimetry data during the course of thermal ablation treatments in canine brain and prostate in vivo.

RESULTS: EPI MRTI provided multi-planar acquisitions and increased temperature sensitivity and lipid suppression. Relative to a single-plane fast gradient-echo MRTI sequence at comparable spatial and temporal resolutions in phantom, EPI MRTI demonstrated a three-fold increase in sensitivity and slice coverage per TR. In vivo monitoring of ultrasound thermal ablation therapy in canine brain and prostate demonstrated the usefulness of the temperature and thermal dose information.

CONCLUSION: Multi-planar MRTI allowed progression of thermal damage to be monitored and treatment parameters adjusted in near real-time (less than five second delay). EPI MRTI is an effective multi-planar monitoring method during ultrasound thermal ablation procedures.

Original languageEnglish
Pages (from-to)706-14
Number of pages9
JournalJournal of Magnetic Resonance Imaging
Volume20
Issue number4
DOIs
Publication statusPublished - 2004 Oct
Externally publishedYes

Free keywords

  • Animals
  • Brain
  • Dogs
  • Echo-Planar Imaging
  • Male
  • Monitoring, Physiologic
  • Phantoms, Imaging
  • Prostate
  • Sensitivity and Specificity
  • Software
  • Temperature
  • Ultrasonic Therapy

Fingerprint

Dive into the research topics of 'Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy'. Together they form a unique fingerprint.

Cite this