Abstract
The effect of ozone (O3) in a turbulent, swirl-stabilized natural gas/air flame was experimentally investigated at atmospheric pressure conditions using planar laser-induced fluorescence imaging of formaldehyde (CH2O PLIF) and dynamic pressure monitoring. The experiment was performed using a dry low emission (DLE) gas turbine burner used in both SGT-700 and SGT-800 industrial gas turbines from Siemens. The burner was mounted in an atmospheric combustion test rig at Siemens with optical access in the flame region. CH2O PLIF imaging was carried out for four different seeding gas compositions and seeding injection channel configurations. Two seeding injection-channels were located around the burner tip while the other two were located along the center axis of the burner at different distances upstream the burner outlet. Four different seeding gas compositions were used: nitrogen (N2), oxygen (O2) and two ozone/oxygen (O3/O2) mixtures with different O3 concentration. The results show that the O3 clearly affects the combustion chemistry. The natural gas/air mixture is preheated before combustion which is shown to kick-start the cold combustion chemistry where O3 is highly involved. The CH2O PLIF signal increases with O3 seeded into the flame which indicates that the pre-combustion activity increases and that the cold chemistry starts to develop further upstream. The small increase of the pressure drop over the burner shows that the flame moves upstream when O3 is seeded into the flame, which confirms the increase in pre-combustion activity.
Original language | English |
---|---|
Title of host publication | Combustion, Fuels and Emissions |
Publisher | American Society Of Mechanical Engineers (ASME) |
Volume | 4A-2016 |
ISBN (Electronic) | 9780791849750 |
DOIs | |
Publication status | Published - 2016 |
Event | ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 - Seoul, Korea, Republic of Duration: 2016 Jun 13 → 2016 Jun 17 |
Conference
Conference | ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 2016/06/13 → 2016/06/17 |
Subject classification (UKÄ)
- Energy Engineering
- Atom and Molecular Physics and Optics