Abstract
The chemokine CCL25 is constitutively expressed in the thymus, and its receptor CCR9 is expressed on subsets of developing thymocytes. Nevertheless, the function of CCL25/CCR9 in adult thymopoiesis remains unclear. Here, we demonstrate that purified CCR9–/– hematopoietic stem cells are deficient in their ability to generate all major thymocyte subsets including double-negative 1 (DN1) cells in competitive transfers. CCR9–/– bone marrow contained normal numbers of lineage– Sca-1+c-kit+, common lymphoid progenitors, and lymphoid-primed multipotent progenitors (LMPP), and CCR9–/– LMPP showed similar T cell potential as their wild-type (WT) counterparts when cultured on OP9–{delta}-like 1 stromal cells. In contrast, early thymic progenitor and DN2 thymocyte numbers were reduced in the thymus of adult CCR9–/– mice. In fetal thymic organ cultures (FTOC), CCR9–/– DN1 cells were as efficient as WT DN1 cells in generating double-positive (DP) thymocytes; however, under competitive FTOC, CCR9–/– DP cell numbers were reduced significantly. Similarly, following intrathymic injection into sublethally irradiated recipients, CCR9–/– DN cells were out-competed by WT DN cells in generating DP thymocytes. Finally, in competitive reaggregation thymic organ cultures, CCR9–/– preselection DP thymocytes were disadvantaged significantly in their ability to generate CD4 single-positive (SP) thymocytes, a finding that correlated with a reduced ability to form TCR-MHC-dependent conjugates with thymic epithelial cells. Together, these results highlight a role for CCR9 at several stages of adult thymopoiesis: in hematopoietic progenitor seeding of the thymus, in the DN-DP thymocyte transition, and in the generation of CD4 SP thymocytes.
Original language | English |
---|---|
Pages (from-to) | 156-164 |
Journal | Journal of Leukocyte Biology |
Volume | 83 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Stem Cell Center (013041110), Pediatrics/Urology/Gynecology/Endocrinology (013240400), Immunology (013212020), Cellular Autoimmunity Unit (013241520)
Subject classification (UKÄ)
- Cell and Molecular Biology