Abstract
A Josephson diode is a nonreciprocal circuit element that supports a larger dissipationless supercurrent in one direction than in the other. In this Letter, we propose a class of Josephson diodes based on supercurrent interferometers composed of Andreev bound state Josephson junctions or interacting quantum dot Josephson junctions, which are not diodes themselves but possess nonsinusoidal current-phase relations. We show that such Josephson diodes have several important advantages, like being electrically tunable and requiring only time-reversal breaking by a magnetic flux. We also show that our diodes have a characteristic ac response, revealed by the Shapiro steps. Even the simplest realization of our Josephson diode paradigm that relies on only two junctions can achieve efficiencies of up to ∼40% and, interestingly, far greater efficiencies are achievable by concatenating interferometer loops. We hope that our Letter will stimulate the search for highly tunable Josephson diode effects in Josephson devices based semiconductor-superconductor hybrids, 2d materials, and topological insulators, where nonsinusoidal current-phase relations were recently observed.
Original language | English |
---|---|
Article number | 267702 |
Journal | Physical Review Letters |
Volume | 129 |
Issue number | 26 |
DOIs | |
Publication status | Published - 2022 Dec 23 |
Subject classification (UKÄ)
- Condensed Matter Physics